76,676 research outputs found

    Improving Medicaid Managed Care for Youth With Serious Behavioral Health Needs: A Quality Improvement Toolkit

    Get PDF
    Profiles successful initiatives by Medicaid managed care organizations in a collaboration to implement systems of care emphasizing early identification, coordination and management, and various services and supports in the least restrictive settings

    Oxygen Absorption in Cooling Flows

    Full text link
    The inhomogeneous cooling flow scenario predicts the existence of large quantities of gas in massive elliptical galaxies, groups, and clusters that have cooled and dropped out of the flow. Using spatially resolved, deprojected X-ray spectra from the ROSAT PSPC we have detected strong absorption over energies ~0.4-0.8 keV intrinsic to the central ~1 arcmin of the galaxy, NGC 1399, the group, NGC 5044, and the cluster, A1795. These systems have amongst the largest nearby cooling flows in their respective classes and low Galactic columns. Since no excess absorption is indicated for energies below ~0.4 keV the most reasonable model for the absorber is warm, collisionally ionized gas with T=10^{5-6} K where ionized states of oxygen provide most of the absorption. Attributing the absorption only to ionized gas reconciles the large columns of cold H and He inferred from Einstein and ASCA with the lack of such columns inferred from ROSAT, and also is consistent with the negligible atomic and molecular H inferred from HI, and CO observations of cooling flows. The prediction of warm ionized gas as the product of mass drop-out in these and other cooling flows can be verified by Chandra, XMM, and ASTRO-E.Comment: 4 pages (2 figures), Accepted for publication in ApJ Letters, no significant changes from previous submitted versio

    Vacuum polarization near cosmic string in RS2 brane world

    Get PDF
    Gravitational field of cosmic strings in theories with extra spatial dimensions must differ significantly from that in the Einstein's theory. This means that all gravity induced properties of cosmic strings need to be revised too. Here we consider the effect of vacuum polarization outside a straight infinitely thin cosmic string embedded in a RS2 brane world. Perturbation technique combined with the method of dimensional regularization is used to calculate vacren{}_{vac}^{ren} for a massless scalar field.Comment: 8 pages, RevTeX

    The Mauna Kea Observatories Near-Infrared Filter Set. I: Defining Optimal 1-5 ÎĽ\mum Bandpasses

    Full text link
    A new MKO-NIR infrared filter set is described, including techniques and considerations given to designing a new set of bandpasses that are useful at both mid- and high-altitude sites. These filters offer improved photometric linearity and in many cases reduced background, as well as preserve good throughput within the JHKLM atmospheric windows. MKO-NIR filters have already been deployed with a number of instruments around the world as part of a filter consortium purchase to reduce the unit cost of filters. Through this effort we hope to establish, for the first time, a single standard set of infrared fitlers at as many observatories as possible.Comment: PASP, in press; 32 pages, 11 figures, 3 Table

    Groundbased near-IR observations of the surface of Venus

    Get PDF
    We present images of the nightside of Venus taken in the near-infrared windows at 1.0, 1.1, 1.18, 1.28, 1.31, and 2.3 microns with the new infrared camera/spectrometer IRIS on the Anglo-Australian Telescope. These data were taken in spectral-mapping mode. This technique involves scanning the telescope perpendicular to the slit, while collecting spectra at successive slit positions across the planet. We produce data cubes with one spectral and two spatial dimensions. Images can be extracted over any wavelength regions. Each image has square pixels of 0.8 inch resolution. We reduced the scattered light from the sunlit crescent in images extracted from each window by subtracting images taken on either side of the window, where the Venus atmosphere is opaque. Unlike the short wavelength windows, which reveal thermal contrasts that originate primarily from the surface and deep atmosphere, the emission in the 2.3 microns window is produced at much higher altitudes (30-40 km). Emission contrasts seen near 2.3 microns are associated with horizontal variations in the cloud optical depths, and have rotation periods of about six days. We detect large contrasts in infrared emission (20-40 percent) across the disc of Venus in the 1.0-, 1.1-, 1.18-, 1.28-, and 1.31-micron images. Contrasts at these wavelengths may be due to a combination of variations in the optical depths of the overlying sulfuric acid clouds and differences in surface emission. Comparison with the 2.3-micron images show that the patterns seen in the 1.28- and 1.31-micron windows are consistent with cloud optical depth variations alone and require no contribution from the surface. However, images at 1.0, 1.1, and 1.8 microns from July 1991 show a dark feature having a contrast that increases with decreasing wavelength. This behavior is contrary to that expected of cloud absorption. Images taken on three successive days in October show another dark feature that is stationary with respect to the surface. These regions of lower emission correspond closely to the high-altitude surface regions of Beta Regio and Aphrodite Terra. The images can potentially reveal the near-infrared emissiveity of the surface of Venus, thereby complementing Magellan radar reflectivity and ground based radio emissivity measurements. The contrast ratio between highlands and plains is much smaller than would be expected for blackbody radiation from the surface along. Unlike at radio wavelengths, where the atmosphere is essentially transparent, at near-infrared wavelengths the atmosphere emits, absorbs, and scatters radiation, and can modify the observed topographically induced contrasts. The additional radiation from the atmosphere reduces the contrast, and further modification would be expected if terrain at different altitudes has different emissivities. A fit to our data therefore requires, and may constrain, a model of the lowest scale height of the atmosphere

    A study of material damping in large space structures

    Get PDF
    A constitutive model was developed for predicting damping as a function of damage in continuous fiber reinforced laminated composites. The damage model is a continuum formulation, and uses internal state variables to quantify damage and its subsequent effect on material response. The model is sensitive to the stacking sequence of the laminate. Given appropriate baseline data from unidirectional material, and damping as a function of damage in one crossply laminate, damage can be predicted as a function of damage in other crossply laminates. Agreement between theory and experiment was quite good. A micromechanics model was also developed for examining the influence of damage on damping. This model explicitly includes crack surfaces. The model provides reasonable predictions of bending stiffness as a function of damage. Damping predictions are not in agreement with the experiment. This is thought to be a result of dissipation mechanisms such as friction, which are not presently included in the analysis

    Theory and simulation of the nematic zenithal anchoring coefficient

    Full text link
    Combining molecular simulation, Onsager theory and the elastic description of nematic liquid crystals, we study the dependence of the nematic liquid crystal elastic constants and the zenithal surface anchoring coefficient on the value of the bulk order parameter

    Waveforms for Gravitational Radiation from Cosmic String Loops

    Get PDF
    We obtain general formulae for the plus- and cross- polarized waveforms of gravitational radiation emitted by a cosmic string loop in transverse, traceless (synchronous, harmonic) gauge. These equations are then specialized to the case of piecewise linear loops, and it is shown that the general waveform for such a loop is a piecewise linear function. We give several simple examples of the waveforms from such loops. We also discuss the relation between the gravitational radiation by a smooth loop and by a piecewise linear approximation to it.Comment: 16 pages, 6 figures, Revte

    Traveling-wave tube circuit simplifies microwave relay

    Get PDF
    Circuit with a sawtooth-modulated traveling-wave tube, which acts as a frequency converter and as an amplifier, simplifies microwave transmission. Lower power losses and reduced size and weight are also realized in this circuit

    Parallel discrete event simulation: A shared memory approach

    Get PDF
    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models
    • …
    corecore